Random Number Generators for Cryptography Design and Evaluation

Viktor FISCHER

Laboratoire Hubert Curien, UMR 5516 CNRS Jean Monnet University, Member of University of Lyon Saint-Etienne, France

fischer@univ-st-etienne.fr

Summer School on Design and Security of Cryptographic Algorithms and Devices, Šibenik, Croatia, June 2014

Random Numbers in Cryptography

Random numbers are crucial for cryptography, they are used as:

- Cryptographic keys
- Initialization vectors, nonces, padding values, ...
- Masks in countermeasures against side channel attacks
- Since the era of Kerckhoff, confidentiality is based on cryptographic keys – algorithms and their implementation can be known by adversaries
- Consequently, cryptographic keys must fulfill stringent security requirements
 - Perfect statistical parameters
 - Unpredictability

Basic RNG Classes

- Deterministic (Pseudo-) random number generators (PRNG)
 - Algorithmic generators
 - Usually faster, with good statistical properties
 - Must be computationally secure, i. e. it should be computationally difficult to guess the next or previous values
 - Their period must be very long
- Physical (True-) random number generators (TRNG)
 - Using some physical source of randomness
 - Unpredictable, usually having suboptimal statistical characteristics
 - Usually slower
- Hybrid random number generators (HRNG)
 - Deterministic RNG seeded repeatedly by a physical random number generator
 - True RNG with algorithmic (e. g. cryptographic) post-processing

RNGs in Logic Devices

▶ RNGs – usually a part of a Cryptographic SoC ⇒ in logic devices

- Logic devices (ASICs or FPGAs)
 - · Aimed at implementation of deterministic systems
 - Designed so that the deterministic behavior dominates
 - Some analog blocks are sometimes available (PLL, RC-oscillator, A/D and D/A converters, etc.)

Challenge #1

Implementation of PRNGs in logic devices is straightforward ... but ...

... finding and exploiting correctly a robust physical source of randomness is a challenging task

TRNG for Cryptography – Classical Design Strategy

- Classical TRNG design
 - Proposition of the physical principle for generating digital noise
 - Simple occupying small area
 - Giving high bit-rate (if possible)
 - Having low power consumption
 - Enhancement of statistical parameters of the generated bitstream using arithmetic post-processing
 - Bias
 - Correlation
 - Entropy per bit
 - Evaluation of the quality by common statistical tests
 - FIPS 140-1 or FIPS 140-2 ¹
 - NIST SP 800-22
 - DIEHARD

¹Only the first, original version of FIPS 140-2, which is not valid any more

Classical versus Modern TRNG Design Approach

- Two main security requirements on RNGs:
 - R1: Good statistical properties of the output bitstream
 - R2: Output unpredictability
- Classical approach:
 - Assess both requirements using statistical tests difficult
- Modern ways of assessing security:
 - Evaluate statistical parameters using statistical tests
 - Evaluate entropy using entropy estimator (stochastic model)
 - Test online the source of entropy using dedicated statistical tests

Objective of the course

To show on practical examples

- Why the thorough security assessment is so important
- How the strict security requirements can be satisfied

It is quite easy to design a "TRNG" that will pass the statistical tests ...

...but it is much more difficult to know where the "randomness" comes from and how much true randomness there is... ¹

 \odot

¹Knowing that only the true randomness cannot be guessed or manipulated

Random Number Generators for Cryptography

Outline

Contemporary TRNG design

- Sources of randomness and entropy extraction methods
- Post-processing methods
- Stochastic models and entropy estimators
- Classical and new methodology of TRNG testing
- TRNG design and security evaluation

Main TRNG Classes

- Maximum entropy" TRNGs
- TRNGs making entropy estimation difficult or impossible
- TRNGs suitable for entropy estimation

Conclusions

Outline

Contemporary TRNG design

- Sources of randomness and entropy extraction methods
- Post-processing methods
- Stochastic models and entropy estimators
- Classical and new methodology of TRNG testing
- TRNG design and security evaluation

Main TRNG Classes

- Maximum entropy" TRNGs
- TRNGs making entropy estimation difficult or impossible
- TRNGs suitable for entropy estimation

3 Conclusions

TRNG Design – Recommendations AIS 31

Source of randomness and entropy extractor

- Should give as much entropy per bit as possible
- Should enable sufficient bit-rate
- Shouldn't be manipulable (robustness)
- Post-processing
 - Algorithmic enhances statistics without reducing the entropy
 - Cryptographic for unpredictability when source of entropy fails
- Embedded tests
 - Fast total failure test
 - Online tests detecting intolerable weaknesses

Sources of Randomness in Logic Devices

- All sources are related to some physical process
 - Clock jitter: short-term variation of an event from its ideal position
 - **Metastability**: ability of an unstable equilibrium electronic state to persist for an indefinite period in a digital system (rare)
 - Chaos: stochastic behavior of a deterministic system which exhibits sensitive dependence on initial conditions (needs analog blocks)
 - **Thermal noise**: noise developed in a resistor (or a passive component), even without electric current (needs analog blocks)

Sources of Randomness: Jittery Clock Signals 1/2

- Clock signal: Periodic rectangular-waveform signal controlling the timing in digital systems
- Its period varies over time, this variation can be seen as:
 - Phase noise (in frequency domain)
 - Timing jitter (in time domain) used in digital electronics
- Common sources of the clock signal in logic devices:
 - RC oscillator (suitable for digital ICs) unbounded jitter
 - Ring oscillator (ideal for digital ICs) unbounded jitter
 - Voltage-controlled oscillator (limited use in digital ICs) jitter bounded by a phase-locked loop (PLL) control
- Ring oscillator odd number of inverters connected in a ring generating clock signal with the mean period T = 2 × N × d_{inv}

Sources of Randomness: Jittery Clock Signals 22

- Clock jitter unwanted and reduced in recent digital technologies
- Measurements
 - Phase jitter $\delta_n = t_n nT_0$
 - Period jitter $\delta'_n = (t_n t_{n-1}) T_0 = \delta_n \delta_{n-1}$
 - Cycle-to-cycle jitter $\delta''_n = (t_n t_{n-1}) (t_{n-1} t_{n-2}) = \delta'_n \delta'_{n-1}$
- Composition
 - Random jitter obeys the central limit theorem (Gaussian PDF)
 - Deterministic jitter dangerous (can potentially be manipulated)

Sources of Randomness: Metastability?

- Definition: Randomly lasting equilibrium of a complex system
- Dangerous in logic devices achieved when a binary signal is sampled during its rising or falling edge
- ► Characterized by the mean time between failures (MTBF) ≈ tens of years in current IC technologies
- Surprisingly, some TRNG designs claimed to use metastability obtain an output bitrate of several Mbits/s ...¹

^I M. Majzoobi et al.: FPGA-Based True Random Number Generation Using Circuit Metastability with Adaptive Feedback Control, CHES 2011

Other Sources of Randomness in Digital Devices

Initialization of a bi-stable circuit to a random state ¹

Intel's hardware random number generator

Randomness in two concurrent writings to RAM memory blocks²

Transitional oscillations in rings of inverters ³

¹G. Taylor, G. Cox: Behind Intel's New Random-Number Generator, http://spectrum.ieee.org

²T. Guneysu: True Random Number Generation in Block Memories of Reconfigurable Devices, FPT 2010

³M. Varchola and M. Drutarovsky: New High Entropy Element for FPGA Based True Random Number Generators, CHES 2010

Choice of the Source of Randomness

- The source of randomness must be clearly defined and well quantified with respect to the entropy extraction method
- Perfect example of what should be avoided: While claiming to use metastability, the designer uses some other, uncharacterized source of entropy

Challenge #2

To define and characterize the physical process that is INDEED used as a source of randomness

External Methods of Randomness Quantification – A Pitfall

Measurement setup

- Oscilloscope LeCroy WavePro 7300
- Standard passive 500 MHz and differential active 3.5 GHz probes
- Standard and LVDS outputs used

Results and conclusion

- Jitter measured using LVDS outputs and differential probe – two times smaller than that using common IOs and probes (!)
- Jitter measured using standard outputs and probes is significantly overestimated

Question

What is the real jitter inside the device?

TRNG Design TRNG Classes Conclusions

andomness Post-processing Models Testing Evaluation

External and Internal Signals Affect Randomness Sources

Radio, TV, telecommunication signals, ...

RO clock period histogram and clock spectrum

- Upper panel:
 - RO near AES cipher
- Lower panel:
 - RO alone in the same chip

Electromagnetic waves captured by hardware increase electric noise

Challenge #3

Estimate and reduce impact of the environment on the generator

18/52

V. FISCHER

Random Number Generators for Cryptography

Mutual Dependence of Ring Oscillator Frequencies

Testing conditions

- Two similar ROs are implemented inside the FPGA,
- Frequencies are measured outside the FPGA,
- The power supply varies between 0.9 and 1.3 V.

Results

 Frequencies approach and lock to the same value during some voltage interval.

V. FISCHER

Randomness Extraction from the Clock Jitter

Principle:

Sampling of a jittery clock signal (CLJ) on the rising edge of the reference clock signal (CLK) using DFFs or latches

- Depending on the frequency and phase relationship, some samples (signal Q) can be:
 - Equal to one (blue samples) or zero (green samples)
 - Equal to one or to zero depending on the jitter (red samples)

Number of red samples determines the output entropy

Challenge #4

To find a RELIABLE method for extracting maximum entropy from the existing source

Huber

LIEL

Extreme Cases in Entropy Extraction by Clock Sampling

- The entropy depends
 - On the size of the (random) jitter
 - On the spectrum of the jitter
 - On the clock frequencies and their initial phase

Maximum entropy – equal frequencies and zero phase difference

=> Each sample is influenced by the jitter

Minimum entropy – equal frequencies and phase difference bigger than the jitter size => No sample is influenced by the jitter!

Post-processing Methods

- Enhance statistical and security characteristics of the TRNG
- Main statistical parameters
 - Bias of the probability of ones (from the ideal value -1/2)
 - Auto-correlation of the TRNG output
 - Entropy per bit (can be increased when reducing the bit rate)
- Main security objectives
 - Even if the source of randomness fails, next and previous values should not be guessable
 - Internal memory of the post-processing algorithm should maintain some entropy, before the total failure test will trigger alarm

Remarks

- The statistical post-processing method shouldn't decrease entropy per bit
- The cryptographic post-processing method must be cryptographically sure

Stochastic Models – Objectives

- Main objectives characterize:
 - Probability of ones: P(X = 1)
 - Probability of an n-bit pattern: $P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n,)$
 - Entropy and so-called conditional entropy
- Bias of the output bit-stream: P(X = 1) 0.5
 - AIS31: smaller than 0.0173 for the raw binary signal
 - Can be easily reduced for uncorrelated random variables (post-processing)

Entropy – gives the uncertainty contained in an information unit

• Shannon entropy for "iid" random variables from a finite set $\boldsymbol{\Omega}$:

$$H(X) = -\sum_{x \in \Omega} P(X = x) \log_2 P(X = x)$$

- The entropy per bit of a TRNG should be close to 1 (according to AIS31, H(X) > 0.997)
- High entropy rate guarantees that the preceding or succeeding bits cannot be guessed with a probability different from 0.5
- Property of random variables and not of observed realizations it cannot be measured, just estimated using the model

Evaluation of the TRNG Using General Statistical Tests

- Classical approach: various general-purpose statistical tests are applied on the generator output
- FIPS140-1 and FIPS140-2 tests ¹
 - 4 tests (Monobit, Poker, Runs, Long runs) applied on bit-streams of 20000 bits
 - The thresholds are different in FIPS 140-1 and FIPS 140-2
 - Tests not included in the latest version of the standard FIPS 140-2
- NIST 800-22 tests ²
 - 15 statistical tests with given testing strategy
 - About 1 Gbit of random data needed
- DIEHARD tests ³
 - 15 statistical tests with testing strategy similar to NIST tests
 - At least 80 million bits needed
- ¹ Federal Information Processing Standard FIPS140-2: Security Requirements for Cryptographic Modules, NIST 2001

²A. Rukhin et al.: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, NIST Special Publication 800-22 rev1a, 2010

AIS31 Testing Methodology Adapted for Physical RNG

- Eight statistical tests have been proposed to be used at different levels of the TRNG evaluation
 - Tests applied on generated random numbers
 - T0 Disjointness test (2¹⁶ 48-bit random blocks must be different), rejection probability for an ideal random source: 10⁻¹⁷
 - T1 T4 Four tests from FIPS140-1 (not from FIPS140-2!) with rejection probability limit 10^{-6}
 - T5 Autocorrelation test
 - Tests applied on the raw binary signal in class PTG.2 and PTG.3 (some weaknesses are tolerable)
 - T6 Uniform distribution test
 - T7 Comparative test for multinomial distribution
 - T8 Coron's entropy test ¹
- AIS 31 testing strategy is clearly defined (how much data, how many test repetitions, how many rejections allowed)

¹ J.-S. Coron: On the Security of Random Sources, Gemplus, Technical Report IT02-1998

Security Threat in TRNG Testing

- Paradox of embedded tests
 - Paradox: implementation of embedded tests (FIPS, NIST, etc.) inside the device, as in ¹ and ²
 - Problem: authors DO NOT consider the impact of the tests on the TRNG
 - Consequences:
 - Tests generate a digital noise the TRNG output passes tests more easily
 - During the normal operation (testing is stopped), the effective noise could be much smaller and the TRNG would not pass the tests
- Solutions:
 - Authors should ensure that the tests do not have ANY impact on the generator – difficult
 - ... tests should never stop running!

¹ R. Santoro et al.: On-line Monitoring of Random Number Generators for Embedded Security, ISCAS 2009

² F. Veljkovic et al.: Low-Cost Implementations of On-the-Fly Tests for Random Number Generators, DATE 2012

TRNG Design Evaluation Criteria

- Resource usage
 - Type and quantity of necessary resources
 - FPGA technology is more restrictive than ASIC
- Speed
 - Bit-rate
 - Regularity of the speed
- Power consumption
 - Depending on the principle and the clock frequency
 - Possibility of stopping the generator
- Feasibility in selected technology
 - Available logic and routing resources
- Design automation
 - Manual intervention (P/R) is needed for each device individually
 - Manual intervention is needed for each device package and/or family
 - Completely automated no manual intervention is needed

TRNG Security Evaluation Criteria

- Robustness, resistance against attacks
 - No way to decrease entropy under a given minimum bound
 - Three possibilities exist
 - A proof of robustness against ALL attacks exist
 - Neither proof nor attack exist
 - Some attack on a particular generator has been reported

Existence of a statistical model

- Stochastic model: quantifies lower entropy bound depending on
 - Random input variables (source of randomness)
 - Generator principle (randomness extraction)
- Stochastic models are different from physical models describing the origin of a physical phenomenon
- The stochastic models must describe only the random process that is actually used as a source of randomness
- Inner testability
 - Inner testability: The raw binary signal must be available
 - Absolute inner testability: The raw binary signal must be available and must not contain a pseudo random pattern

TRNG Design – Conclusion

TRNG designs should continue to evolve towards security:

Outline

Contemporary TRNG design

- Sources of randomness and entropy extraction methods
- Post-processing methods
- Stochastic models and entropy estimators
- Classical and new methodology of TRNG testing
- TRNG design and security evaluation

Main TRNG Classes

- "Maximum entropy" TRNGs
- TRNGs making entropy estimation difficult or impossible
- TRNGs suitable for entropy estimation

3 Conclusions

"Maximum Entropy" True Random Number Generators

Principle:

Two clocks: the same frequency, "zero" phase difference

Tolerance to a "non-zero" phase difference can be obtained in two ways:

Several slightly delayed jittery clock signals are used

The mutual phase is adjusted dynamically to zero

Example 1: Open-loop TRNG – "OLOOP-TRNG"

- Generator claimed to use metastability ¹
- Many slightly delayed signals are used

- Delays must be smaller than the jitter (overlapped jittery zones)
- Jittery clocks are sampled using latches and not flip-flops!

¹ J.-L. Danger, S. Guilley, P. Hoogvorst: High Speed True Random Number Generator Based on Open Loop Structures in FPGAs, Elsevier, Microelectronics Journal, 2009

OLOOP-TRNG – Assessment

- Resource usage
 - Small area (\approx 120 FPGA logic cells)
 - Common elements: LUTs, latches and DFFs
 - Critical point: Delay elements (featuring very small delays, \approx ps)
- Speed
 - High and regular speed (\approx 20 Mb/s)
- Power consumption
 - Considering the speed, could be relatively low (not given)
- Feasibility in logic devices
 - Not feasible if delays cannot be sufficiently small
- Design automation
 - Per family (if feasible)

Security Assessment

- Difficult to create a model (unknown delays)
- Impossible to test in real time (too many signals)
- Critical point: delays depend on the temperature

LABORATOIR

LIEL

TRNGs Making Entropy Estimation Difficult or Impossible

 Generators using randomness in initialization of flip-flops, memories, "metastable" structures, etc.

 Group of generators mixing pseudo-randomness and true randomness before entropy extraction

Example 2: TRNG Using Metastable RO – "MERO-TRNG"

- Yet another generator claimed to use metastability ¹
- Inverters of the ring oscillator (RO) are put periodically to a "metastable" state
 - The phase after the "metastable" state is unknown (randomness)

In reality, the metastable state is very difficult to obtain

¹ I. Vasyltsov, E. Hambardzumyan, Y.S. Kim, B. Karpinskyy: Fast Digital TRNG Based on Metastable Ring Oscillator, CHES 2008

MERO-TRNG – Assessment

- Resource usage
 - Small area (\approx tens of FPGA logic cells)
 - Common elements: MUX, inverters, control logic
 - Critical point: Setting up inverters into metastable states
- Speed
 - Relatively high and regular speed (\approx 10 Mb/s)
- Power consumption
 - Could be relatively low (not given)
- Feasibility in logic devices
 - Should be feasible in logic devices, but more difficult in FPGAs
- Design automation
 - Per family (if feasible)

Security Assessment

- Impossible to create a model (unknown distribution of initial states)
- Impossible to test initial states in real time
- Critical point: initial states can (will) depend on the temperature

Example 3: TRNG Using Fibonacci and Galois RO – "FIGARO-TRNG"

- Original idea: replace registers in Fibonacci and Galois LFSR by inverters¹
- The two ring oscillators should give noisy signals having a uniform spectrum (white noise)

- In reality, some frequencies dominate
- Another problem observed: the generator sometimes stalls

¹ J. Golic: New Methods for Digital Generation and Post-processing of Random Data. IEEE TC 55(10), 2006

FIGARO-TRNG – Assessment

- Resource usage
 - Small area (\approx hundreds of FPGA logic cells)
 - Common elements: XOR gates, inverters, registers
 - Manual routing of both ring oscillators is necessary
- Speed
 - High speed depending on the noisy signal spectrum (\approx 10 Mb/s)
- Power consumption
 - Relatively high and local (not given)
- Feasibility in logic devices
 - Should be feasible in logic devices, but more difficult in FPGAs
- Design automation
 - Needs manual routing for each device family

Security Assessment

- Impossible to create a model (pseudo-randomness)
- Impossible to test (some modification proposed by Dichtl)
- Critical point: they can generate patterns and stall

LABORATOR

LIEL

TRNGs Suitable for Entropy Estimation

- Generators with transitional oscillatory state
- Multiphase sampling TRNGs with minimum entropy estimation
 - TRNGs with randomly distributed clock phases
 - TRNGs with periodically occurring clock phases (coherent sampling)

Ex. 4: Transition Effect RO-based TRNG - "TERO TRNG"

- Original idea: a bi-stable logic structure can be initialized into an oscillatory state of random duration ¹ (similar patented by Dichtl)
- Duration of oscillations depends on the symmetry of the structure
- The noise dynamically changes the delays

- Difficulty: oscillations shouldn't be too short (small entropy) nor too long (no entropy)
- Problem: some cells oscillate infinitely without explication ...

¹ M. Varchola, M. Drutarovsky: New High Entropy Element for FPGA Based True Random Number Generators, CHES 2010

TERO-TRNG – Assessment

- Resource usage
 - Very small area (only a few FPGA logic cells per TERO core)
 - Common elements: XOR and AND gates, registers
- Speed
 - Very high speed depending on number of TERO cells (\approx 250 kb/s per one TERO cell)
- Power consumption
 - Relatively high and local (not given)
- Feasibility in logic devices
 - Feasible in logic devices including FPGAs
- Design automation
 - Needs manual routing for each device family

Security Assessment

- Statistical model can be easily created
- TRNG-specific tests can be easily implemented
- Critical point: unknown reason for infinite oscillations

LABORATOIR

ГІЕГ

Example 5: Multiple Ring Oscillator TRNG – "MURO TRNG"

- Source of randomness jitter of clocks generated in multiple ROs
- Generated clock period T divided to N "urns" depending on jitter size – N rings are needed (114 in a given example)
- Rings are supposed to be independent urns are distributed uniformly across T

The generator has been "proven to be secure" ¹ for N sufficiently large

¹ B. Sunar, W. J. Martin, D. R. Stinson: A Provably Secure True Random Number Generator with Built-in Tolerance to Active Attacks, IEEE TC 2007

Sunar et al.'s Approach

Good approach...

- Mathematical model (Urn model)
- Entropy estimators based on jitter size
- Post-processing using resilient functions

But... unrealistic assumptions (Dichtl & Golic, Wold & Tan, ...):

- Jitter size determined by external measurements
- Itoo many transitions in the XOR tree
- Setup and Hold time violation in the D-Flip Flop
- (In)dependence between ROs (coupling).

Improvement of Sunar et al.'s Principle

Wold and Tan added flip-flops at outputs of ROs¹

- Problem with transitions in the XOR tree solved ⇒ undeniable improvement!
- Conclusions of Wold and Tan:
 - 114 ROs are not needed because TRNG output passes statistical tests for configurations with 50 and even with only 25 ROs
 - Post-processing not necessary anymore
 - Lower cost and power consumption, because less ROs are used

¹ K. Wold, C. H. Tan: Analysis and Enhancement of Random Number Generator in FPGA Based on Oscillator Rings, IJRC 2009

Important Remarks Concerning MURO-TRNG

- Wold and Tan: number of ROs reduced from 114 down to 50 or 25 because outputs passed the tests
- Mathematical problem: according to the urn model of Sunar, not enough entropy
- Our experimental result: simulation outputs WITHOUT jitter (= WITHOUT randomness) pass tests starting from 18 rings

Remark 1

Sunar's original principle (and Wold's improvements too) produce a huge amount of pseudo-randomness that can be predicted (mathematical equation) or manipulated from outside the chip (see last attacks of Markettos *et al.* and Bayon *et al.*)

Remark 2

Reducing the number of ROs (as proposed by Wold and Tan) represents a security-critical attempt for cryptographic applications and should be certainly avoided

MURO-TRNG – Assessment

- Resource usage
 - Relatively big area (many urns)
 - Common elements: inverters (for ROs), registers
- Speed
 - Medium speed (after necessary post-processing)
- Power consumption
 - Relatively high (not given)
- Feasibility in logic devices
 - Feasible in logic devices in general (including FPGAs)
- Design automation
 - Needs manual routing in order to avoid locking of ROs

Security Assessment

- Statistical model assumptions must be verified
- TRNG-specific tests cannot be implemented
- Critical point: oscillators can lock and reduce entropy to zero!

Example 6: PLL-based TRNG – "PLL-TRNG" 1/2

- Principle¹: PLL-based coherent sampling
- Source of randomness: tracking jitter of the PLL (bounded)

• K_M and K_D must be relatively prime, K_D should be odd

¹ V. Fischer and M. Drutarovsky: True Random Number Generator Embedded in Reconfigurable Hardware, CHES 2002

PLL-based TRNG – "PLL-TRNG" 22

- TRNG output bitrate: $R = T_Q^{-1} = f_{ref}/K_D$
- Sensitivity to jitter: $S = \Delta^{-1} = K_D / T_{jit}$
- Conclusions:
 - For increasing *R* and *S*, *f*_{ref} should be as high as possible
 - For increasing R, K_D should be as small as possible
 - For increasing S, K_M should be as big as possible
- Two PLLs can be used for increasing the bitrate and sensitivity to jitter:

PLL-TRNG – Assessment

- Resource usage
 - Small area (\approx tens of FPGA logic cells)
 - PLLs + Common elements: XOR gates, registers, counters
 - Critical point: PLLs not available in all technologies
- Speed
 - Relatively high speed depending on PLL parameters (\approx 1 Mb/s)
- Power consumption
 - Essentially given by PLL (can be stopped in Actel, not in Altera)
- Feasibility in logic devices
 - If PLL available, no problems in many configurations
- Design automation
 - PLL settings must be done manually, routing fully automatic

Security Assessment

- Easy to model
- Easy to test (absolutely internally testable)
- PLL often physically isolated from the rest of device advantage

Outline

Contemporary TRNG design

- Sources of randomness and entropy extraction methods
- Post-processing methods
- Stochastic models and entropy estimators
- Classical and new methodology of TRNG testing
- TRNG design and security evaluation

Main TRNG Classes

- Maximum entropy" TRNGs
- TRNGs making entropy estimation difficult or impossible
- TRNGs suitable for entropy estimation

3 Conclusions

Conclusions

- Designing robust generators giving high-quality true random numbers in logic devices remains a challenge
- We explained that security parameters like robustness, availability of a stochastic model, testability, etc. always take priority in a data security system
- Statistical tests necessary BUT insufficient
- **Entropy** cannot be measured, only estimated from the model
- Testing the source of entropy before entropy extraction increases security

Random Number Generators for Cryptography Design and Evaluation

Viktor FISCHER

Laboratoire Hubert Curien, UMR 5516 CNRS Jean Monnet University, Member of University of Lyon Saint-Etienne, France

fischer@univ-st-etienne.fr

Summer School on Design and Security of Cryptographic Algorithms and Devices, Šibenik, Croatia, June 2014

